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Abstract

A simple expression for the linewidth of vertical-cavity periodic-gain
laser diodes is reported. Quantum wells, spaced half-a-wavelength apart
are assumed to be driven by time-independent electrical currents Ji, and
to possess distinct phase-amplitude coupling factors ax. The usual
linewidth formula is found to be applicable if the photon lifetime is
defined as the round-trip time divided by a factor of 6, and the averaging
of the ok is made with Jx as a weighting factor. Furthermore, half the
spatial variance of o, must be subtracted. The expression involves cross
terms of the form o o, 1 # .



1 INTRODUCTION

Conventional Fabry-Pérot laser diodes tend to oscillate on many
longitudinal modes. The introduction of a periodic gain leads to drastic
improvements. This concept has been implemented for laser diodes with
light propagating along the junction plane [1] and with light propagating
perpendicular to the junction plane ("vertical-cavity surface-emitting
lasers”: VCSEL) [2]. In the first case, the coupled-mode theory presented
by Kogelnik and Shank and later refined [3] is most appropriate.

In the present paper we consider mainly VCSELs. The thin gain
regions (perhaps Quantum wells) are located at the peaks of the optical
field [4]. They are accurately modeled by admittances periodically
connected to a transmission line [5]. The optical feedback is entirely due
to reflection from the gain regions. Because gain and reflection from
individual wells are small, such a configuration requires many wells,
perhaps 1000. For half-wavelength well-spacings, this corresponds to a
total length L = 220 pm at 1.55 um, assuming an index of refraction of
3.5. In the model treated, the left-hand-side is fully reflecting, while the
right-hand-side (optical output) is antireflection-coated. The effective
photon lifetime pertaining to modulation and noise is found to be one
sixth of the round-trip time. This small value implies large modulation
bandwidths, but, in counterpart, rather large spectral widths.

The linewidth is importantly affected by electrical driving
conditions, namely, the driving impedance and the injected electrical
noise, particularly when the active layers have different phase-amplitude
coupling factors [6]. To our knowledge, linewidth formulas that takes the
electrical drive into consideration have not been reported. The
introduction of a longitudinal K-factor seems to be accurate only in the
linear regime.

Idealized configurations involving n active layers driven by time-
independent currents Ji, not all necessarily equal, are considered. This
driving condition is plausible when the current is injected from the side as
shown in Fig.(1a) through high-resistivity layers. Indeed, Nyquist's noise
currents associated with high resistances at room temperature is

negligible compared to shot-noise [7]. The phase-amplitude coupling
factors ok and the population inversion factors npk need not be the same
for different layers. For simplicity, we restrict ourselves to the much-
above-threshold operation and neglect spontaneous carrier recombination
in comparison with stimulated recombination. Our conclusion is that the
effective phase-amplitude coupling factor should be averaged with the
injected current as a weighting factor. One must further subtract half the
spatial variance of a, as found earlier for ring-type configurations [6].
Spectral-hole burning [8, 9] is briefly discussed.

2 STEADY-STATE OPERATION

The gain-grating laser is modeled by n admittances Yx connected to
a transmission line at z = kp, where k = 1,..., n. The period p equals half
a wavelength at the operating frequency vo. The left-hand side of the
transmission line is open circuited, while the right-hand side constitutes
the matched output port, see Fig.1b. For simplicity, and without loss of
generality, the characteristic conductance of the transmission line is taken
as unity.

It is well-known that when a transmission line is loaded by some
admittance Y at z = 0, the ratio I/V equals - Y at every half wavelength.

For later convenience, we let VJ 2hvy and I\j 2hvg , rather than V and

I, denote the voltage and current, respectively, along the transmission
line. I is positive if directed along the z-axis. The photonic rate R, defined
as the electromagnetic power divided by the photon energy, is the real
part of V*L.

The steady-state oscillation condition is

Yi+...+Ya+1=0 (1a)
whose real and imaginary parts are

G1+...+Gp+1=0, B1+...+Bh=0 (1b)



setting for any admittance: Y = G + iB.

When the active regions (e.g., quantum wells) are electrically
driven from the side as shown in Fig. la, the admittances may be nearly
equal: Gk = - 1/n and Bk = O for all k, the power gain per active layer
being approximately equal to 1+1/n. For conventional Fabry-Pérot laser
diodes of equal length, this gain value would imply mirror reflectivities:
Rj =1, Rz = 0.135, corresponding to photon lifetimes half the round-trip
time. In the present situation, feedback is provided by the active layers
themselves.

The steady-state values of the admittances are assumed real (pure
gain-grating) but not necessarily equal. Deviations of the total admittance
from its (zero) steady-state value caused by frequency and carrier
number deviations are evaluated in Sections 3 and 4, respectively. The
instantaneous frequency deviation dv follows by specifying that the total
admittance remains equal to zero. Upper bars denoting steady-state values
are omitted when no confusion with instantaneous values may arise.

3 DISPERSION

Taking it for granted that the admittances Yk satisfy Eq.(1) at the
center frequency Vo, the admittance at z = L is evaluated for a deviation
dv of the optical frequency.

The equations of propagation along a uniform transmission line of
characteristic admittance unity are

V(z) = V4 exp(ikz) + V. exp(-ikz) (2a)
I(z) = V4 exp(ikz) - V. exp(-ikz) (2b)
where V4 and V. are complex constants and

k=2nvn/c=2n/A (3)

where ny denotes the refractive index, ¢ the speed of light in free space,
and A the wavelength in the transmission medium.

Atz=0
Y1=-10)/V(0) = - (V4 - V. )(V4 + V) )

The admittance just before z = p is

Y(p-)=-1(p-) / V(p-) = - (V4 €10 - V. e10)/(V4eid + V. e-i0) (5)

where
d=kp=kop+30=7+ 30 (6a)
30 =2 1°dv, 1°=plvg vg=2mdv/dk (6b)

since p equals a half-wavelength at the center frequency vo. The group
index ¢/vg is of the order of 4 for most III-V coumpounds.

Expending the right-hand-side of Eq.(5) we obtain to first order in
50

Y(p-)= (Y1 +180)/(1 +1id0¢ Y1) = Y1.+1 8¢ (1 - Y12) (7)

Proceeding to the next period, Y7 is added to Y(p-), and the process

in Eq.(7) is iterated. Keeping only terms of order 8¢, the total admittance
dY(v) at z=np = L (the subscript v is a reminder that the change of Y

results from frequency deviation) is found to be

8Y(v)=i80 [n-1-Y12-(Y1+Y2)2 - (Y1 + ..t Yn 102l (8)

the terms in bracket being steady-state values. The expression in Eq.(8) in
fact holds at any z = k p.
When the admittances are equal to - 1/n, Eq.(8) reads



OYy =180 {n-1-[1+22+... +(n-1)2] /n2} (9a)
Using Eq.(6b) and a well-known summation formula, Eq.(9a) reads
8BV =41 Tp ov (gb)
Tp/t= (4 n2 - 3 n - 1)/(24 n2) (9¢)
where the round-trip time T =2 n t°. Anticipating the final result of this
paper, we have introduced in Eq.(9) a photon lifetime 7 that vanishes as
expected for n = 1 and is equal to /6 in the large n limit.

The voltage moduli Vgl is independent of k to first-order in §¢

when the admittances Y are real in the steady-state. Indeed, we have
from Eqgs.(2) and (6)

Vi=Vi+ V. [1 =V - V.=-Y1 Vi (10a)

-V =Viedd 4+ Vel = (Vit+ V) + (Ve-V.)ido

=Vi1(1-Y1i00)=V1 (-G i30) (10b)
Hence
V2l = Vil (10c)

to first order. It follows by iteration that [Vl = [Vl for all k. The voltage
V = Vj, is henceforth considered real, without loss of generality.

4 CARRIER FLUCTUATIONS AND NOISE
Deviations of an admittance from its steady-state value as a result of

carrier-number variation and noise are now considered, the sign
convention being shown in Fig.lc. Nyquist's-like noise sources are

represented in the narrow-band approximation by complex currents C(t)
[8]. Accordingly

I=YV+c, c=¢ 41" (11)
c' and ¢" are independent, and their (double-sided) spectral densities are
S¢=Se¢"=1G, n=(N1-N2)/(N1+N2)=1-2np (12)

where N1 and N2 denote the number of atoms in the lower and upper
states, respectively. The population inversion (or spontaneous emission)
factor np has been introduced. For active admittances with complete
population inversion 1 = - 1 and np is unity. At room temperature np is of
the order of 2.

The discussion is restricted to high-impedance electrical drives. In
that situation the injected rates do not fluctuate [7]. The photon generation
rate does not fluctuate either at low frequencies since spontaneous carrier
recombination is neglected. In the present model all the generated photons
are absorbed in a single load and thus the aborbed rate does not fluctuate.

For a cold absorber (subscript o) such as the matched load
terminating the transmission line in Fig.(1b), G =1 and 1 = 1. Because G
is a constant, the deviation of I/V from the steady-state value results only
from the noise term C, (sometimes refered to as "vacuum fluctuation")

0Yto=08(I/V)=Co/V = V8Gy=CH, VBip=C" (13)

where the subscript "t" for "total" indicates that the noise term is
included.

Since the absorbed photonic rate R does not fluctuate, Eq.(11) with
V real leads to

S[Re(V*D)] =8P+ VC'o=0, P=IV2 = §P=-V, (14a)



We established earlier that the Pk = IVkI2 are all equal at the center
frequency independently of the Yy values, and remain so under small
frequency changes. Accordingly, Eq.(14a) predicts that

OPr=0P =~V €% (14b)
Consider next an active element (G < 0) with constant injected

electronic rate. The output photonic rate does not vary, but G varies as a

result of carrier-number variations. Using Eq. (11), the generalization of

Eq.(14a) is '

O[Re(V¥)] =G dP+PdG+Vc' =0, P=IVI2 (15)

and the total admittance change is

0Y¢=0(I/V) =1 +i)dG+Cc/V (16a)
where
o = BN/GN . (16b)

is Lax’s phase-amplitude coupling factor [10]. In Eq. (16b) the N
subscripts denote derivatives with respect to the carrier number N, at
some optical frequency. This definition of o implies that Y depends only
on N, as is the case when thermal equilibrium is established within the
conduction and valence bands.

Substituting the expression for 8G in Eq.(15) into Eq.(16a) we
obtain
8Y¢=- (1 +ia) (G &P/ +C'/V) +¢c/V (17a)

whose imaginary part is

dBi=-0 (G3P/P+cC'/V)+C"/V (17b)

Consider now the specific configuration in Fig. 1b. When the
expression for 3P in Eq.(14) is substituted into Eq.(17b), and subscripts k
are appended, we obtain

V 8Btk = C"k + 0k ( Gk C'o - C'k) (18)

Let 8B(N) (subscript N being a reminder that the change is due to

carrier number and noise) denote the total change of susceptance, i.e., the
sum of the 6Bk in Eq.(18) and 8By in Eq.(13)

V 8B =C"o + 2 [C"k + 0k ( Gk C'o - C'k)] (19)

where the sum is from k =1 to n.
We are now in position to give a general expression for the laser
linewidth.

5 LINEWIDTH FORMULA

The instantaneous frequency deviation v is obtained by specifying
that

dBv)+ 0By =0 (20)

where 8By is given in Eq.(9) and 8By in Eq.(19):
- 411y V 8V =C"o + X [C"k + 0k (Gk C'o - C'k)] 2D

The noise terms on the right-hand-side of Eq.(21) are independent.
The spectral densities of C'y and c"o are both unity, while the spectral
densities of C'k and C"x are both equal to NxGk. Thus, the spectral density
Ssy of dv is given by
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(4 1p V)2 Sgy = 1 + ZnkGy + (ZokGi)2 + Zo2 MGy (21)

Since the (full-width at half-power ) laser linewidth Av is 27 times
the (double-sided) spectral density of dv at low frequencies, we arrive at
the linewidth formula

21 J Av = (1/1p)2 [1 + 2ZniGx + (ZokGy)2 + Zoy2 NGy 1/4 (22)

where eJ denotes the total injected current (e is the electron charge). The
photon lifetime Tp is, according to Eq.(9), the round-trip time 7t divided
by 6.

If we introduce the population inversion factors npk according to
Eq.(12), Eq.(22) reads

2n J Av = (1/1p)2 [<np (1 + 02)> - (<02> - <0>2)/2]/2 (23)
The averaging is defined as

<x>=2 xe Ju /2 I (24)

where the sum is over the active elements, k = 1, ... n, with time-
independent injected carrier rates Jx. We have used the fact that Jx = - Gi
P, P = IViI2, for any k.

If, for example, the npk are unity, the injected currents are equal,
and the o factors are alternately +5 and -5, the laser linewidth is
enhanced with respect to the linear regime (Schawlow-Townes formula)
by a factor of 6.75. If the second term in bracket Eq.(23) that results
from the supression of injected-current fluctuations were ignored, the
factor would be equal to 13 instead.

We have treated explicitly purely gain-coupled distributed feedback
configurations, with full reflection on one side and no reflection on the
other. It is straighforward to treat by the same method the case of real
reflections on both sides, the steady-state oscillation still occurring exactly
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at Bragg's wavelength. Of greater difficulty is the case of partly index-
coupled gratings because the frequency deviates from Bragg's condition
in the steady-state.

At high power spectral-hole burning (SHB) may be significant.
The dynamics and noise sources in the diffusion of carriers from the high
injection energy to the energy spacing appropriate for interaction with
the optical field are, in fact, quite analogous to (spatial) carrier diffusion
through resistors. In a circuit model, SHB thus acts as a resistance in
series with the external electrical resistance, with negligible added noise
(for kT << hv). The optical gain should be considered a function of
carrier number and photon rate (rather than photon number), the noise
source being at the shot-noise level. An equivallent electrical circuit was
presented in [9]. For the laser model presently considered with large
driving impedances, SHB should not affect importantly intensity noise.
But since SHB unclamps the carrier number and deforms the gain-versus-
frequency curve, profound effects on linewidth are expected.

6 CONCLUSION

Lax's laser-oscillator linewidth formula [10] can be adapted to gain-
coupled distributed feedback lasers, for an idealized model consisting of
gain-layers spaced half-a-wavelength apart, and driven by constant
currents. The averaging of the layer phase-amplitude coupling factors (o
or a2) is to be effected with the injected currents as weighting factors.
One must substract from the term 1+<02> half the spatial variance of o
[the second term in bracket, Eq.(24)]. The cross-products terms ¢ o, i#j,
do not appear in alternative theories that ignore electrical driving
conditions. The result in Eq.(23) coincides with the result obtained in [6]
for ring-type resonators. The photon lifetime entering the linewidth
formula is only one sixth the round-trip time. Broad modulation and
spectral linewidths are thus expected, in comparison with Fabry-Pérot
laser diodes of equal length.
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FIGURE CAPTION
Figure.l

a) Gain-coupled distributed feedback laser, with light propagating
perpendicularly to the layers (i.e. along the z-axis), and current injection
is from the side. The gain layers, labeled 1, ... n, spaced half-a-
wavelength apart, are represented in b) as admittances connected to a
transmission line. The left-hand-side of the transmission line is open
circuited (full reflection) while the right-hand-side is matched to an

absorbing load (not shown). The sign convention for any admittance and
Nyquist's-like current source C is in ¢).
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